首页 > PHP资讯 > Python培训 > 用Python写一个简单的中文分词器

用Python写一个简单的中文分词器

Python培训

解压后取出以下文件:

训练数据:icwb2-data/training/pku_ training.utf8

测试数据:icwb2-data/testing/pku_ test.utf8

正确分词结果:icwb2-data/gold/pku_ test_ gold.utf8

评分工具:icwb2-data/script/socre

2 算法描述

算法是最简单的正向最大匹配(FMM):

用训练数据生成一个字典

对测试数据从左到右扫描,遇到一个最长的词,就切分下来,直到句子结束

注:这是最初的算法,这样做代码可以控制在60行内,后来看测试结果发现没有很好地处理数字问题, 才又增加了对数字的处理。

3 源代码及注释

#! /usr/bin/env python# -*- coding: utf-8 -*-  # Author: minix# Date:   2013-03-20   import codecsimport sys   # 由规则处理的一些特殊符号numMath = [u'0', u'1', u'2', u'3', u'4', u'5', u'6', u'7', u'8', u'9']numMath_suffix = [u'.', u'%', u'亿', u'万', u'千', u'百', u'十', u'个']numCn = [u'一', u'二', u'三', u'四', u'五', u'六', u'七', u'八', u'九', u'〇', u'零']numCn_suffix_date = [u'年', u'月', u'日']numCn_suffix_unit = [u'亿', u'万', u'千', u'百', u'十', u'个']special_char = [u'(', u')']      def proc_num_math(line, start):    """ 处理句子中出现的数学符号 """    oldstart = start    while line[start] in numMath or line[start] in numMath_suffix:        start = start + 1    if line[start] in numCn_suffix_date:        start = start + 1    return start - oldstart   def proc_num_cn(line, start):    """ 处理句子中出现的中文数字 """    oldstart = start    while line[start] in numCn or line[start] in numCn_suffix_unit:        start = start + 1    if line[start] in numCn_suffix_date:        start = start + 1    return start - oldstart   def rules(line, start):    """ 处理特殊规则 """    if line[start] in numMath:        return proc_num_math(line, start)    elif line[start] in numCn:        return proc_num_cn(line, start)   def genDict(path):    """ 获取词典 """    f = codecs.open(path,'r','utf-8')    contents = f.read()    contents = contents.replace(u'r', u'')    contents = contents.replace(u'n', u'')    # 将文件内容按空格分开    mydict = contents.split(u' ')    # 去除词典List中的重复    newdict = list(set(mydict))    newdict.remove(u'')       # 建立词典    # key为词首字,value为以此字开始的词构成的List    truedict = {}    for item in newdict:        if len(item)>0 and item[0] in truedict:            value = truedict[item[0]]            value.append(item)            truedict[item[0]] = value        else:            truedict[item[0]] = [item]    return truedict   def print_unicode_list(uni_list):    for item in uni_list:        print item,   def divideWords(mydict, sentence):    """     根据词典对句子进行分词,    使用正向匹配的算法,从左到右扫描,遇到最长的词,    就将它切下来,直到句子被分割完闭    """    ruleChar = []    ruleChar.extend(numCn)    ruleChar.extend(numMath)    result = []    start = 0    senlen = len(sentence)    while start < senlen:        curword = sentence[start]        maxlen = 1        # 首先查看是否可以匹配特殊规则        if curword in numCn or curword in numMath:            maxlen = rules(sentence, start)        # 寻找以当前字开头的最长词        if curword in mydict:            words = mydict[curword]            for item in words:                itemlen = len(item)                if sentence[start:start+itemlen] == item and itemlen > maxlen:                    maxlen = itemlen        result.append(sentence[start:start+maxlen])        start = start + maxlen    return result   def main():    args = sys.argv[1:]    if len(args) < 3:        print 'Usage: python dw.py dict_path test_path result_path'        exit(-1)    dict_path = args[0]    test_path = args[1]    result_path = args[2]       dicts = genDict(dict_path)    fr = codecs.open(test_path,'r','utf-8')    test = fr.read()    result = divideWords(dicts,test)    fr.close()    fw = codecs.open(result_path,'w','utf-8')    for item in result:        fw.write(item + ' ')    fw.close()   if __name__ == "__main__":    main()

4 测试及评分结果

使用 dw.py 训练数据 测试数据, 生成结果文件

使用 score 根据训练数据,正确分词结果,和我们生成的结果进行评分

使用 tail 查看结果文件最后几行的总体评分,另外socre.utf8中还提供了大量的比较结果, 可以用于发现自己的分词结果在哪儿做的不够好

注:整个测试过程都在Ubuntu下完成

$ python dw.py pku_training.utf8 pku_test.utf8 pku_result.utf8

$ perl score pku_training.utf8 pku_test_gold.utf8 pku_result.utf8 > score.utf8

$ tail -22 score.utf8

INSERTIONS:     0

DELETIONS:      0

SUBSTITUTIONS:  0

NCHANGE:        0

NTRUTH: 27

NTEST:  27

TRUE WORDS RECALL:      1.000

TEST WORDS PRECISION:   1.000

=== SUMMARY:

=== TOTAL INSERTIONS:   4623

=== TOTAL DELETIONS:    1740

=== TOTAL SUBSTITUTIONS:        6650

=== TOTAL NCHANGE:      13013

=== TOTAL TRUE WORD COUNT:      104372

=== TOTAL TEST WORD COUNT:      107255

=== TOTAL TRUE WORDS RECALL:    0.920

=== TOTAL TEST WORDS PRECISION: 0.895

=== F MEASURE:  0.907

=== OOV Rate:   0.940

=== OOV Recall Rate:    0.917

=== IV Recall Rate:     0.966


基于词典的FMM算法是非常基础的分词算法,效果没那么好,不过足够简单,也易于入手,随着学习的深入,我可能还会用Python实现其它的分词算法。另外一个感受是,看书的时候尽量多去实现,这样会让你有足够的热情去关注理论的每一个细节,不会感到那么枯燥无力。


Python培训

本文由欣才IT学院整理发布,未经许可,禁止转载。
支持42不支持0