1、base64加密
在页面中引入base64.js文件,调用方法为:
base64加密 <script type="text/javascript" src="base64.js">《script》<script type="text/javascript"> var b = new Base64(); var str = b.encode("admin:admin"); alert("base64 encode:" + str);//解密 str = b.decode(str); alert("base64 decode:" + str);《script》
2、md5加密
在页面中引用md5.js文件,调用方法为
md5加密 <script type="text/ecmascript" src="md5.js">《script》<script type="text/javascript"> var hash = hex_md5("123dafd"); alert(hash)《script》
3、sha1加密
据说这是最安全的加密
页面中引入sha1.js,调用方法为
sha1加密 <script type="text/ecmascript" src="sha1.js">《script》<script type="text/javascript"> var sha = hex_sha1('mima123465') alert(sha)《script》
一下为js们的源代码
base64.js:
/**** Base64 encode / decode** @author haitao.tu* @date 2010-04-26* @email tuhaitao@foxmail.com**/function Base64() { // private property _keyStr = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/="; // public method for encoding this.encode = function (input) { var output = ""; var chr1, chr2, chr3, enc1, enc2, enc3, enc4; var i = 0; input = _utf8_encode(input); while (i < input.length) { chr1 = input.charCodeAt(i++); chr2 = input.charCodeAt(i++); chr3 = input.charCodeAt(i++); enc1 = chr1 >> 2; enc2 = ((chr1 & 3) << 4) | (chr2 >> 4); enc3 = ((chr2 & 15) << 2) | (chr3 >> 6); enc4 = chr3 & 63; if (isNaN(chr2)) { enc3 = enc4 = 64; } else if (isNaN(chr3)) { enc4 = 64; } output = output + _keyStr.charAt(enc1) + _keyStr.charAt(enc2) + _keyStr.charAt(enc3) + _keyStr.charAt(enc4); } return output; } // public method for decoding this.decode = function (input) { var output = ""; var chr1, chr2, chr3; var enc1, enc2, enc3, enc4; var i = 0; input = input.replace(/[^A-Za-z0-9+/=]/g, ""); while (i < input.length) { enc1 = _keyStr.indexOf(input.charAt(i++)); enc2 = _keyStr.indexOf(input.charAt(i++)); enc3 = _keyStr.indexOf(input.charAt(i++)); enc4 = _keyStr.indexOf(input.charAt(i++)); chr1 = (enc1 << 2) | (enc2 >> 4); chr2 = ((enc2 & 15) << 4) | (enc3 >> 2); chr3 = ((enc3 & 3) << 6) | enc4; output = output + String.fromCharCode(chr1); if (enc3 != 64) { output = output + String.fromCharCode(chr2); } if (enc4 != 64) { output = output + String.fromCharCode(chr3); } } output = _utf8_decode(output); return output; } // private method for UTF-8 encoding _utf8_encode = function (string) { string = string.replace(/rn/g,"n"); var utftext = ""; for (var n = 0; n < string.length; n++) { var c = string.charCodeAt(n); if (c < 128) { utftext += String.fromCharCode(c); } else if((c > 127) && (c < 2048)) { utftext += String.fromCharCode((c >> 6) | 192); utftext += String.fromCharCode((c & 63) | 128); } else { utftext += String.fromCharCode((c >> 12) | 224); utftext += String.fromCharCode(((c >> 6) & 63) | 128); utftext += String.fromCharCode((c & 63) | 128); } } return utftext; } // private method for UTF-8 decoding _utf8_decode = function (utftext) { var string = ""; var i = 0; var c = c1 = c2 = 0; while ( i < utftext.length ) { c = utftext.charCodeAt(i); if (c < 128) { string += String.fromCharCode(c); i++; } else if((c > 191) && (c < 224)) { c2 = utftext.charCodeAt(i+1); string += String.fromCharCode(((c & 31) << 6) | (c2 & 63)); i += 2; } else { c2 = utftext.charCodeAt(i+1); c3 = utftext.charCodeAt(i+2); string += String.fromCharCode(((c & 15) << 12) | ((c2 & 63) << 6) | (c3 & 63)); i += 3; } } return string; }}
MD5.js:
/* * A JavaScript implementation of the RSA Data Security, Inc. MD5 Message * Digest Algorithm, as defined in RFC 1321. * Version 2.1 Copyright (C) Paul Johnston 1999 - 2002. * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet * Distributed under the BSD License * See for details. *//* * Configurable variables. You may need to tweak these to be compatible with * the server-side, but the defaults work in most cases. */var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */var chrsz = 8; /* bits per input character. 8 - ASCII; 16 - Unicode *//* * These are the functions you'll usually want to call * They take string arguments and return either hex or base-64 encoded strings */function hex_sha1(s) { return binb2hex(core_sha1(str2binb(s), s.length * chrsz));}function b64_sha1(s) { return binb2b64(core_sha1(str2binb(s), s.length * chrsz));}function str_sha1(s) { return binb2str(core_sha1(str2binb(s), s.length * chrsz));}function hex_hmac_sha1(key, data) { return binb2hex(core_hmac_sha1(key, data));}function b64_hmac_sha1(key, data) { return binb2b64(core_hmac_sha1(key, data));}function str_hmac_sha1(key, data) { return binb2str(core_hmac_sha1(key, data));}/* * Perform a simple self-test to see if the VM is working */function sha1_vm_test() { return hex_sha1("abc") == "a9993e364706816aba3e25717850c26c9cd0d89d";}/* * Calculate the SHA-1 of an array of big-endian words, and a bit length */function core_sha1(x, len) { /* append padding */ x[len >> 5] |= 0x80 << (24 - len % 32); x[((len + 64 >> 9) << 4) + 15] = len; var w = Array(80); var a = 1732584193; var b = -271733879; var c = -1732584194; var d = 271733878; var e = -1009589776; for (var i = 0; i < x.length; i += 16) { var olda = a; var oldb = b; var oldc = c; var oldd = d; var olde = e; for (var j = 0; j < 80; j++) { if (j < 16) w[j] = x[i + j]; else w[j] = rol(w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16], 1); var t = safe_add(safe_add(rol(a, 5), sha1_ft(j, b, c, d)), safe_add(safe_add(e, w[j]), sha1_kt(j))); e = d; d = c; c = rol(b, 30); b = a; a = t; } a = safe_add(a, olda); b = safe_add(b, oldb); c = safe_add(c, oldc); d = safe_add(d, oldd); e = safe_add(e, olde); } return Array(a, b, c, d, e);}/* * Perform the appropriate triplet combination function for the current * iteration */function sha1_ft(t, b, c, d) { if (t < 20) return (b & c) | ((~b) & d); if (t < 40) return b ^ c ^ d; if (t < 60) return (b & c) | (b & d) | (c & d); return b ^ c ^ d;}/* * Determine the appropriate additive constant for the current iteration */function sha1_kt(t) { return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : (t < 60) ? -1894007588 : -899497514;}/* * Calculate the HMAC-SHA1 of a key and some data */function core_hmac_sha1(key, data) { var bkey = str2binb(key); if (bkey.length > 16) bkey = core_sha1(bkey, key.length * chrsz); var ipad = Array(16), opad = Array(16); for (var i = 0; i < 16; i++) { ipad[i] = bkey[i] ^ 0x36363636; opad[i] = bkey[i] ^ 0x5C5C5C5C; } var hash = core_sha1(ipad.concat(str2binb(data)), 512 + data.length * chrsz); return core_sha1(opad.concat(hash), 512 + 160);}/* * Add integers, wrapping at 2^32. This uses 16-bit operations internally * to work around bugs in some JS interpreters. */function safe_add(x, y) { var lsw = (x & 0xFFFF) + (y & 0xFFFF); var msw = (x >> 16) + (y >> 16) + (lsw >> 16); return (msw << 16) | (lsw & 0xFFFF);}/* * Bitwise rotate a 32-bit number to the left. */function rol(num, cnt) { return (num << cnt) | (num >>> (32 - cnt));}/* * Convert an 8-bit or 16-bit string to an array of big-endian words * In 8-bit function, characters >255 have their hi-byte silently ignored. */function str2binb(str) { var bin = Array(); var mask = (1 << chrsz) - 1; for (var i = 0; i < str.length * chrsz; i += chrsz) bin[i >> 5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i % 32); return bin;}/* * Convert an array of big-endian words to a string */function binb2str(bin) { var str = ""; var mask = (1 << chrsz) - 1; for (var i = 0; i < bin.length * 32; i += chrsz) str += String.fromCharCode((bin[i >> 5] >>> (24 - i % 32)) & mask); return str;}/* * Convert an array of big-endian words to a hex string. */function binb2hex(binarray) { var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; var str = ""; for (var i = 0; i < binarray.length * 4; i++) { str += hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8 + 4)) & 0xF) + hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8)) & 0xF); } return str;}/* * Convert an array of big-endian words to a base-64 string */function binb2b64(binarray) { var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; var str = ""; for (var i = 0; i < binarray.length * 4; i += 3) { var triplet = (((binarray[i >> 2] >> 8 * (3 - i % 4)) & 0xFF) << 16) | (((binarray[i + 1 >> 2] >> 8 * (3 - (i + 1) % 4)) & 0xFF) << 8) | ((binarray[i + 2 >> 2] >> 8 * (3 - (i + 2) % 4)) & 0xFF); for (var j = 0; j < 4; j++) { if (i * 8 + j * 6 > binarray.length * 32) str += b64pad; else str += tab.charAt((triplet >> 6 * (3 - j)) & 0x3F); } } return str;}
希望本文所述对大家JavaScript程序设计有所帮助。
更多JS实现的base64加密、md5加密及sha1加密详解相关文章请关注PHP中文网!